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Rainbow transition in chaotic scattering
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We study the effects of classical chaotic scattering on the differential cross section, which is the measurable
quantity in most scattering experiments. We show that the fractal set of singularities in the deflection function
is not, in general, reflected on the differential cross section. We show that there are systems in which, as the
energy~or some other parameter! crosses a critical value, the system’s differential cross-section changes from
a singular function having an infinite set of rainbow singularities with structure in all scales to a smooth
function with no singularities, the scattering being chaotic on both sides of the transition. We call this meta-
morphosis therainbow transition. We exemplify this transition with a physically relevant class of systems.
These results have important consequences for the problem of inverse scattering in chaotic systems and for the
experimental observation of chaotic scattering.
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Chaotic scattering is one of the most important manif
tations of chaos in open systems. The number of phys
systems where chaotic scattering has been identified is
too many for an exhaustive list; notable examples inclu
molecular dynamics@1#, fluid dynamics@2#, atomic physics
@3#, electronic conductance in mesoscopic systems@4#, and
scattering in smooth potentials@5#, to name a few. Chaotic
scattering is characterized by the presence of a Cantor s
singularities inscattering functionsrelating the final state o
a scattered particle to its initial state, such as the deflec
angle as a function of the impact parameter. This fractal
of singularities is the result of the existence of a fractal se
bounded unstable orbits in the scattering region. Syst
with chaotic scattering have regions in the space of ini
conditions where the outcome of the scattering is very s
sitive to small changes in the initial state@6#, which is a
defining feature of chaos.

Most investigations of chaotic scattering so far have
cused on the study of scattering functions, whose prope
are determined by individual trajectories. Although sensit
ity of individual trajectories to initial conditions may in prin
ciple be observable, in practice it is usually not possible
observe individual trajectories, and hence, this phenome
is not accessible to direct observation. For this reason,
experimentally important quantities are those obtained fr
a beam of incident trajectories, spanning a large range
impact parameters. The scattering of a beam of incident
ticles is described by thedifferential cross section ds/dV,
which measures the intensity of the scattered beam in a g
direction, and is the measured quantity in most scatte
experiments. A natural question arises: how does cha
scattering manifest itself in the differential cross sect
ds/dV? In particular, does chaotic scattering imply a set
singularities with structure in all scales fords/dV, as it does
for the deflection angle? This paper addresses these q
tions.

Singularities in the differential cross section appear in
form of rainbow singularities@7#, which arise as a result o
the density of scattered trajectories being infinite for so
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directions, causingds/dV to diverge there. Rainbow singu
larities correspond to caustic directions, and are seen as s
bright peaks in scattering experiments. They have been
served in many scattering experiments, including atom
scattering@8#, optical systems@9#, and nucleus-nucleus col
lisions @10#. The appearance of rainbow singularities in ch
otic scattering systems has been investigated previously
particular potentials~usually superpositions of repulsiv
hills! @11,12#; in those studies,ds/dV was shown to have an
infinite set of rainbow singularities, which mirrored nice
the fractal set of singularities in the deflection functio
Those results have led to the tacit belief@11# that all systems
showing chaotic scattering have such a set of singularitie
the differential cross section, related in a simple way to
set of singularities in the deflection function. In this pap
we address this issue in a general way, and we show
there are systems whose scattering is chaotic but have
ertheless a smooth differential cross section, with no rainb
singularities. This means that the presence of a fractal se
singularities in the deflection function, which characteriz
chaotic scattering, is not necessarily reflected in the cr
section. In fact, in this paper, we introduce a physically i
portant class of potentials, which shows a kind of dynami
metamorphosis, namely, a transition from a differential cr
section with an infinite set of rainbow singularities to a pe
fectly smooth cross section, even though the scatterin
chaotic on both sides of the transition; we call this pheno
enon arainbow transition. We note that this phenomenon
not a pathology devoid of physical meaning; on the contra
it is a common property shared by many important physi
systems, such as the one we introduce below as an exam
The reason why chaotic scattering systems do not necess
have singularities in their differential cross sections is t
rainbow singularities arise from extrema~maxima, minima,
or saddle points! of the deflection function, which are no
directly related to the deflection function’s fractal set of s
gularities. In the previously studied systems, the potent
were such that the deflection function had a set of max
and minima along with the fractal set of singularities, and
©2002 The American Physical Society06-1
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a consequence,ds/dV also had a set of singularities mirro
ing those of the deflection function. However, this need
be the case: there are potentials whose deflection func
has a Cantor set of singularities~which means that the sys
tem shows chaotic scattering! and has no maxima or minima
their differential cross section being smooth. We now p
ceed to illustrate the above points with a concrete system

For simplicity, we restrict ourselves in this paper to cla
sical Hamiltonian systems whose~three-dimensional! poten-
tials are symmetric with respect to thez axis; in this case, the
dynamics is effectively two dimensional. We further restr
the incident particles to have initial velocities parallel toz. In
this case, the motion of the particles is restricted to a pl
containingz. These conditions being satisfied, the output
rection of the particle depends only on the angleu deter-
mined by the particle’s velocity after the scattering and thz
axis, with 0<u,p. The differential cross section depen
thus onu only. For a givenu, ds/dV is the sum of the
contributions from all trajectories scattered in the directionu
@7#,

ds

dV
~u!5(

i

bi

sinu Udf~bi !

db U21

, ~1!

wheref(b) denotes the deflection suffered by an incide
particle with impact-parameterb (b is measured with respec
to the symmetry axisz). The sum is over all impact
parametersbi satisfyingf(bi)12np5u for some integern.
Note that contrary tou, f can take either positive or nega
tive values. The above formula relates the scattering func
f(b), which gives information about individual trajectorie
to the differential cross-sectionds/dV that gives informa-
tion about a beam of trajectories. In systems with chao
scattering, there is a Cantor set of values ofb for whichf(b)
is singular. From Eq.~1!, we see thatds/dV can diverge in
two ways@7#: ~1! for u50 or u5p ~forward and backward
glory!, or ~2! for df/db50 ~rainbow singularity!. We focus
our attention on the rainbow singularities, since the glo
singularities are a purely kinematic effect that are not rela
to the scattering dynamics.

As an example, we introduce a class of potentialsU(x,y)
defined on the planes containing the symmetry axis.U is
defined to be the sum of two localized potential hills,

U~x,y!5V~x,y2a!1V~x,y1a!, ~2!

whereV(x,y) is a spherically symmetric potential that d
cays rapidly for large distances, and it is attractive beyon
certain distance from the center. This attractive characte
fundamental for the appearance of chaotic orbits: the dyn
ics in the field of two purely repulsive hills is always regula
We further impose the additional condition that the distan
2a which separates the center of the two hills is large eno
so that the overlap of the two potentials is small, and
motion of a particle in the vicinity of one of the hills can b
considered to be influenced by the potential of that hill alo
the effect of the other one being negligible. This latter co
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dition allows the dynamics of the system to be understood
a sequence of scatterings from each individual hill, as
will see.

Examples of physical systems that could be modeled
Eq. ~2! include the elastic interaction of an atom with a d
atomic molecule whose atoms can be considered to be fi
@1#, the electronic scattering by a diatomic molecule@13#, the
interaction of an electron or a hole with a pair of quantu
dots in a semiconductor@14#, and the scattering of light by a
pair of transparent spheres with a refraction index which
pends on their radius@7#. For definiteness, we chooseV to be
the Morse potential@15#, given in appropriate units by

V~x,y!5
1

2
$12exp@a~r 2r e!#%

22
1

2
, ~3!

wherer 25x21y2, and the parametersa andr e are related to
the range of the potential and the size of the repulsive c
The potential~3! is repulsive forr ,r e and attractive forr
.r e , and approaches zero exponentially forr @r e . The
large separation condition spelled out in the previous pa
graph means in this case 2a(a2r e)@r e . We choose the
values a56, r e50.68, and a52 in what follows. The
Morse potential describes approximately the interaction
two atoms due to their dipole-dipole interaction@15#. We
emphasize that our results are not dependent on the par
lar, form of V, and in particular we show explicitly below
that the rainbow transition in the differential cross section
a generic property for a large class of potentialsV.

Because of the large separation condition, the scatte
by the full potentialU can be~approximately! described as
being a succession of isolated scatterings by each of the
V(x,y2a) and V(x,y1a). Since each hill is spherically
symmetric, one single scattering on such a hill is not chao
but the composition of many individual scatterings by a p
of hills may be chaotic, as we will see. The scattering on
isolated hill is described by the deflection functionf0(b).
Remember that we allowf0 to assume arbitrary values, s
the number of ‘‘turns’’ a particle makes during scattering
taken into account. Letfmax be the maximum value~in
module! assumed byf0. For fmax&p, the attractive part of
the potential is not capable of bending an incident partic
trajectory enough for it to reach the other hill. Even thou
the repulsive core can deflect a particle towards the o
hill, the attractive part does not participate in this ‘‘swin
ing’’ process. In this case, there is no fractal set of unsta
orbits and no chaotic scattering, for the same reason tha
scattering by two purely repulsive hills is not chaotic. F
fmax&p, therefore, the scattering is regular, but forfmax
*p it is chaotic, because the particle is now able to rea
the other hill.fmax is a function of the energy of the incom
ing particles:fmax5fmax(E), andfmax increases as the en
ergy decreases. The transition point between chaotic
nonchaotic scattering, given byfmax'p, is found numeri-
cally to beE5Ec'0.39, for the parameters chosen by u
Thus, the scattering, which is regular forE.Ec , becomes
chaotic for E,Ec . This can be seen clearly in Fig. 1~a!,
which shows the deflection anglef(b) ~for the whole poten-
tial U, not for an isolated hill! as a function of the impac
6-2
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parameter forE50.38. Magnifications of Fig. 1~a! @one of
them is shown in Fig. 1~b!# show thatf(b) has structure on
all scales, and the calculation of the box-counting dimens
of the set of singularities on the one-dimensional segm
parametrized byb, using the uncertainty method@16#, gives
d50.2660.02. We note that every timefmax crosses an odd
multiple of p, a set of unstable orbits is created in a h
moclinic bifurcation, corresponding to particles being able
make multiple turns around a hill.

From Figs. 1~a! and 1~b!, we see that there is an infinit
number of maxima and minima in the deflection functionf,
occurring on the smooth intervals off in between the sin-
gularities. This is a consequence of the fact that the defl
tion function f0(b) of one isolated hill has one maximum
fmax and one minimum2fmax; remember that the scatte
ing by the total potentialU can be regarded as a sequence
scatterings by individual hills. From our earlier discussio
this means that the differential cross section has an infi
set of rainbow singularities. This is also confirmed by a
rect numerical calculation of the cross section using Eq.~1!
@17#. The result is shown in Fig. 1~c!, where the rainbow
singularities are seen as sharp spikes. We thus find tha
energies close to the critical energyEc ~but lower thanEc),
the differential cross section has a set of rainbow singul
ties mirroring the singularities inf, just as in the system
studied previously@11,12#. Since the maxima and minima o
f lie on the complement of the Cantor set of singulariti
the rainbow singularities form a countable set, with struct
on all scales, which reflects the fractal structure of the se
singularities off.

This is not the whole story, however. AsE is further low-

FIG. 1. ~a! Deflection anglef as a function of the impac
parameterb, for E50.38. f is calculated by numerically integrat
ing the equations of motion for initial conditionsy05210 andx
5b. ~b! is an enlargement of~a!. The scattering is clearly chaotic
andf(b) has an infinite set of maxima and minima in all scales.~c!
Differential cross sectionds/dV as a function of the scatterin
angleu for E50.38. ds/dV has an infinite set of rainbow singu
larities.
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ered,fmax grows, and the maximum~and minimum! in f0
becomes sharper and sharper. For a second critical en
Et,Ec , fmax diverges: fmax(E)→` for E→Et from
above. ForE<Et , f0(b) has no maxima or minima, an
consequently, the deflection functionf(b) of the full poten-
tial U also has no maxima or minima. We find numerica
Et'0.30 for our parameters. The deflection functionf(b)
for E50.28 is plotted in Figs. 2~a! and 2~b!, and we see
clearly that although it has a fractal structure, it has
maxima or minima. As a result, there are no rainbow sin
larities for E,Et , and the differential cross section is pe
fectly smooth, as shown in Fig. 2~c!, although the scattering
is still chaotic forE,Et , as is evident from Figs. 2~a! and
2~b!, and from a numerical calculation of the box-countin
dimension of the set of singularities, which givesd50.34
60.02. AsE crossesEt from above, there is a transition from
a differential cross section with an infinite number of rai
bow singularities to a smooth one, with the scattering be
chaotic on both sides of the transition; this is the rainb
transition. Since every timefmax crosses an odd multiple o
p, a set of unstable orbits is created, and sincefmax→` as
E approachesEt , the transition at energyEt is the accumu-
lation point of an infinite number of~homoclinic! bifurca-
tions.

Although for convenience of explanation we illustrate
this transition with a particular choice of potential~3!, our
result is general. To show this, let us consider the effec
potential of one hill V~r!

Ve f f~r !5V~r !1
L2

2mr2
, ~4!

where L is the angular momentum of the particle with r
spect to the center of the hill, andm is the reduced mass
fmax diverges for some energy wheneverVe f f has a positive-

FIG. 2. Same as Fig. 1, forE50.28. Although the scattering is
still chaotic, f(b) no longer has any smooth maximum or min
mum, andds/dV is smooth.
6-3
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valued maximum, which corresponds to the existence o
circular unstable periodic orbitC with positive energy, thus
enabling an incoming particle to approachC asymptotically.
Those are the orbits with divergingf0 ~that is, they lie on the
stable manifold ofC). SinceV is by assumption attractive
for large enoughr , V approaches zero from negative valu
for r→`. If V decays fast enough so thatr 2V(r )→0 as r
→`, the positive termL2/2mr2 in Eq. ~4! eventually be-
comes larger in module than the negative termV(r ), for
large r. SinceVe f f→0 for r→`, this means thatVe f f has a
maximumVmax, with Vmax.0. This proves that all poten
tials of the form~2! whereV is spherically symmetric with a
rapid enough decay for larger ~faster thatr 22) display the
rainbow transition from a singular to a smooth cross sec
studied above~as long as the separation 2a is large enough!.
In fact, we expect this transition to be found in many oth
systems, not just in those described by Eq.~2!.

To sum up, we have shown that the differential cross s
tion of a scattering system may be smooth even when
,

.
s.

ev

t-
d
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scattering is chaotic, and we have studied a class of syst
which show a rainbow transition from a cross section with
infinite set of rainbow singularities to a smooth one, the s
tem showing chaotic scattering on both sides of the tra
tion. This is important because the differential cross sect
is in many cases the most accessible quantity in a scatte
experiment, and the possibility of a smooth cross section
chaotic scattering systems may pose new challenges for
observation of chaotic scattering. Our results also have
portant consequences to the theory of inverse chaotic sca
ing, since it does not appear to be possible to infer the fra
structure of the invariant set of a chaotic scattering sys
from a smooth cross section. As a final note, even though
have limited ourselves to classical scattering, our res
should also hold for wave scattering in the short-wavelen
limit.
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